728x90
■ 삼각함수의 배각 및 반각 공식 (단위원으로 증명)
삼각함수의 배각 및 반각의 공식을 단위원으로 증명해 보자.
▶ 배각의 공식
오른쪽 그림과 같이 각 의 동경과 단위원이 만나는 점을 C, 단위원이 x축과 만나는 점을 각각 A, B라 하고, 점 C에서 x축에 내린 수선의 발을 H라고 하자.
점 C의 좌표는 이고
이므로
,
즉
또한 ,
즉
▶ 반각의 공식
오른쪽 그림과 같이 각 의 동경과 단위원이 만나는 점을 C, 단위원이 x축과 만나는 점을 각각 A, B라 하고, 점C에서 x축에 내린 수선의 발을 H라고 하자.
점 C의 좌표는 이므로
에서 ……①
배각의 공식에 의하여
이고 ……②
②를 ①에 대입하면
같은 방법으로 에서 이므로
반응형
'Joy Of Math > 생각넓히기' 카테고리의 다른 글
피타고라스의 수 (0) | 2020.07.30 |
---|---|
자산을 2배로 늘리는 72법칙(지수함수 활용) (0) | 2019.11.13 |
사이클로이드 (0) | 2019.10.24 |
직각삼각형의 길이의 비 및 넓이의 비 (0) | 2019.06.07 |
사영(사영기하학) (0) | 2019.05.31 |